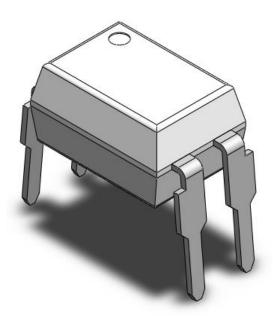
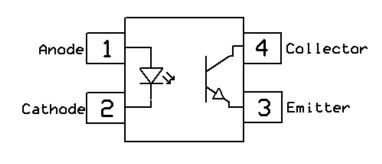


Features

- High isolation 5000 VRMS
- Patented coplanar structure DMC-Isolator®
- Various CTR selection available
- DC input with transistor output
- Operating Temperature range 55 °C to 110 °C
- External creepage distance ≥ 7.0mm
- Distance Through Isolation ≥ 0.4mm
- Clearances Distance ≥ 7.5mm (S/SL Type)
- Clearances Distance ≥ 8.0mm (M/SLM Type)
- RoHS and REACH compliance
- Halogen Free compliance (Optional)
- MSL class 1
- Regulatory Approvals
 - ✓ UL UL1577 (E364000)
 - ✓ VDE EN60747-5-5(VDE0884-5)
 - ✓ CQC GB4943.1, GB8898 (14001104781)
 - ✓ IEC62368 (FI/41119)


Description

The CT817 series consists of a photo transistor optically coupled to an Infrared-emitting diode in a 4-lead DIP DMC-Isolator® package with different lead forming options.


Applications

- Switch mode power supplies
- Computer peripheral interface
- Microprocessor system interface

Package Outline

Schematic

Note: Different lead forming options available. See package dimension.

Absolute Maximum Ratings $T_A = 25^{\circ}C$, unless otherwise specified

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters	Ratings	Units	Notes
Viso	Isolation voltage (AC, 1 minute, 40 ~ 60% R.H.)	5000	V _{RMS}	
Topr	Operating temperature	-55 ~ +110	°C	
Tstg	Storage temperature	-55 ~ +150	°C	
TsoL	Soldering temperature (For 10 seconds)	260	°C	
Ртот	Total power dissipation	200	mW	
Emitter		·		
I _F	Forward current	60	mA	
I _{F(TRANS)}	Peak transient current (≤1µs P.W,300pps)	1	А	
V _R	Reverse voltage	6	V	
P _D	Emitter power dissipation	100	mW	
Rth _{J-A}	Thermal Resistance Junction-Ambient	350	°C/W	
TJ	Junction temperature	125	°C	
Detector		•	·	
P _D	Detector power dissipation	150	mW	
B _{VCEO}	Collector-Emitter Breakdown Voltage	35	V	
Bveco	Emitter-Collector Breakdown Voltage	6	V	
Ic	Collector Current	50	mA	

Electrical Characteristics $\tau_A = 25$ °C, unless otherwise specified

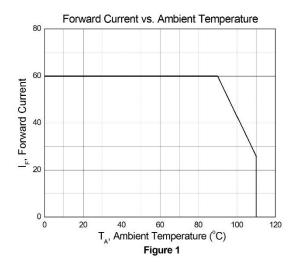
Emitter Characteristics

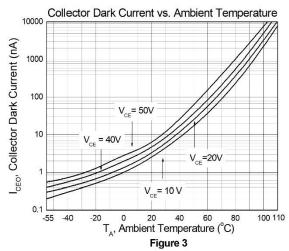
Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward voltage	I _F =10mA	-	1.24	1.4	V	
I _R	Reverse Current	V _R = 6V	-	-	5	μΑ	
Cin	Input Capacitance	f= 1MHz	-	10	30	pF	

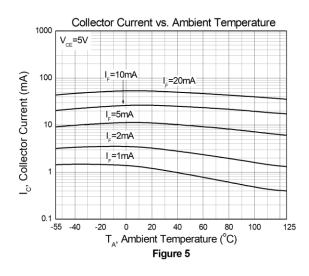
Detector Characteristics

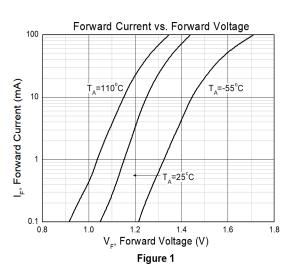
Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
B _{VCEO}	Collector-Emitter Breakdown	I _C = 0.1mA	35	-	-	V	
Bveco	Emitter-Collector Breakdown	I _E = 0.1mA	6	-	-	V	
ICEO	Collector-Emitter Dark Current	V _{CE} = 20V, I _F =0mA	-	-	100	nA	

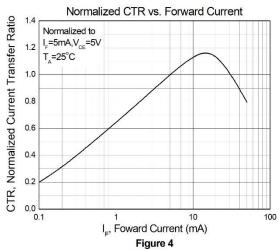
Transfer Characteristics

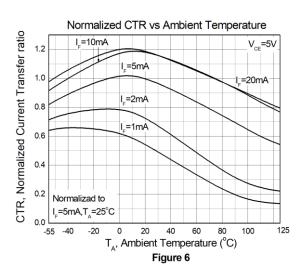

Symbol	Parameters	;	Test Conditions	Min	Тур	Max	Units	Notes
	CT81 Current Transfer Ratio CT81 CT81	CT817	I _F = 5mA, V _{CE} = 5V	50	-	600	%	
		CT817A		80	-	160		
CTR		CT817B		130	-	260		
		CT817C		200	-	400		
		CT817D		300	-	600		
Variation	Collector-Emitter Satura	ation	I _F = 20mA, I _C = 1mA		0.1	0.2	V	
VCE(SAT)	Voltage		IF- ZUITA, IC- IIIIA	-	0.1	0.2	V	
R _{IO}	Isolation Resistance		V _{IO} = 500V _{DC} , 40 ~ 60% R.H.	5x10 ¹⁰	1	-	Ω	
Cıo	Isolation Capacitance		f= 1MHz	-	0.25	1	pF	

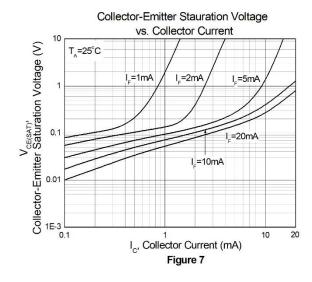

Switching Characteristics

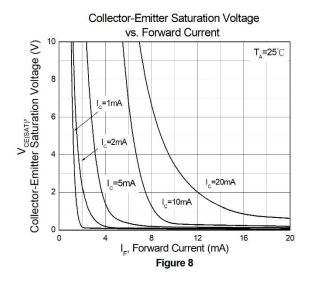

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
tr	Rise Time	I _C = 2mA, V _{CE} = 2V	-	6	18	0	
t _f	Fall Time	R _L = 100Ω		8	18	μS	

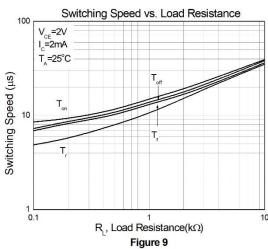


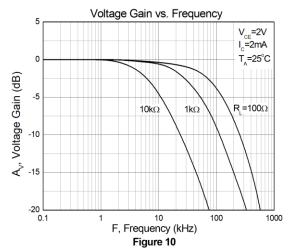

Typical Characteristic Curves $T_A = 25$ °C, unless otherwise specified



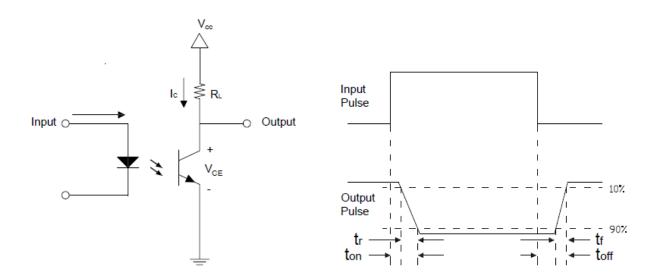




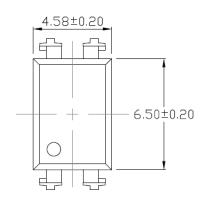


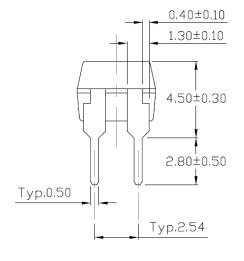


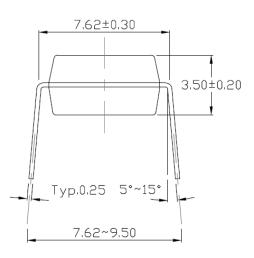
Typical Characteristic Curves $\tau_A = 25$ °C, unless otherwise specified (Continued)



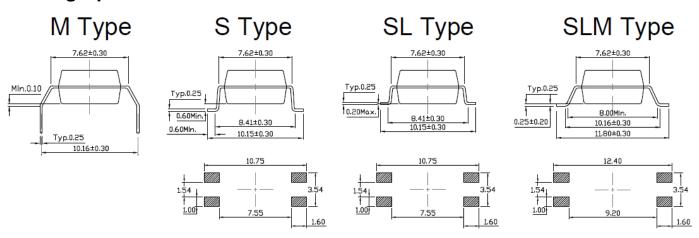
Test Circuit




Figure 11: Switching Time Test Circuits



Package Dimension Dimensions in mm unless otherwise stated


Standard DIP - Through Hole

Forming Option Dimensions in mm unless otherwise stated

Marking Information

Note:

CT : Denotes "CT Micro"

817 : Part Number

X : CTR Rank Option (Blank, A, B, C or D)V : VDE Safety Mark Option (Blank or V)

Y : One Digit Year CodeWW : Two Digit Work WeekK : Manufacturing Code

: Lead Frame Material Option(Blank : Iron ; • : Copper)

Ordering Information

CT817X (V)(Y)(Z)-HG

CT = Denotes "CT Micro"

817 = Part Number

X = CTR Rank Option (Blank, A, B, C, D, I, J, K, N, F or Y)

V = VDE Safety Mark Option (Blank or V)

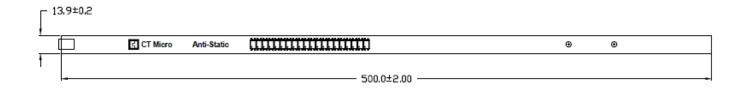
Y = Lead Form Option (S, SL, M, SLM or Blank)

Z = Tape and Reel Option (Blank, T1, T2, T3 or T4)

H = Lead Frame Option (H: Iron, Blank: Copper)

G = Material Option (G: Halogen Free, Blank: Non-Halogen Free)

Option	Description	Quantity
None	Standard 4 Pin DIP	100 Units/Tube
М	Gullwing (400mil) Lead Forming	100 Units/Tube
S(T1)	Surface Mount Lead Forming – With Option 1 Taping	1500 Units/Reel
S(T2)	Surface Mount Lead Forming – With Option 2 Taping	1500 Units/Reel
SL(T1)	SL(T1) Surface Mount (Low Profile) Lead Forming– With Option 1 Taping	
SL(T2)	Surface Mount (Low Profile) Lead Forming – With Option 2 Taping	1500 Units/Reel
SLM(T1)	SLM(T1) Surface Mount (Gullwing) Lead Forming– With Option 1 Taping	
SLM(T2) Surface Mount (Gullwing) Lead Forming – With Option 2 Taping		1500 Units/Reel



Carrier Specifications Dimensions in mm unless otherwise stated

Tube Option Standard DIP

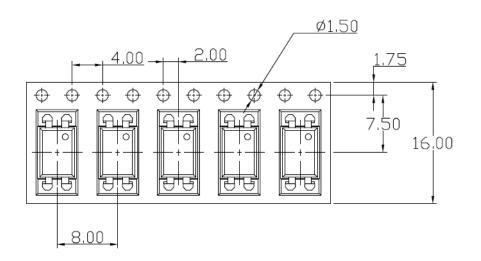
Tube Option M Type

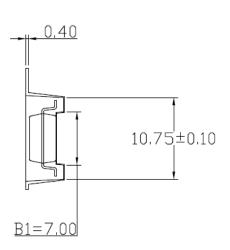
Reel Dimension All dimensions are in mm, unless otherwise stated

Option S(T1/T2) & SL(T1/T2)

100.00 330.00 \$\phi_{13.20}\$ -16.50 -20.50

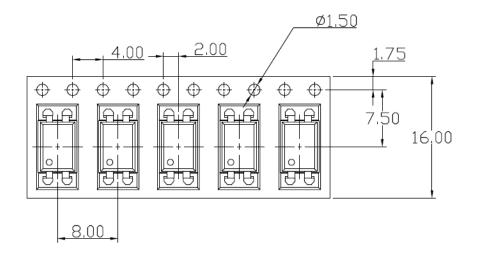
Option SLM(T1/T2)

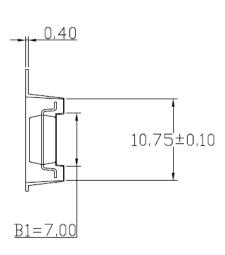


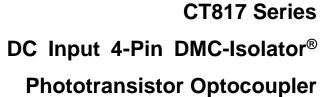


Carrier Tape Specifications Dimensions in mm unless otherwise stated

Option S(T1) & SL(T1)

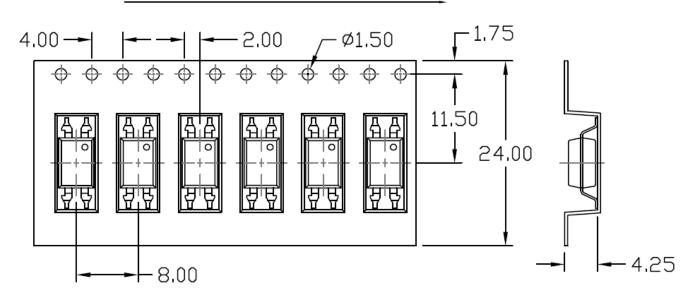

Input Direction

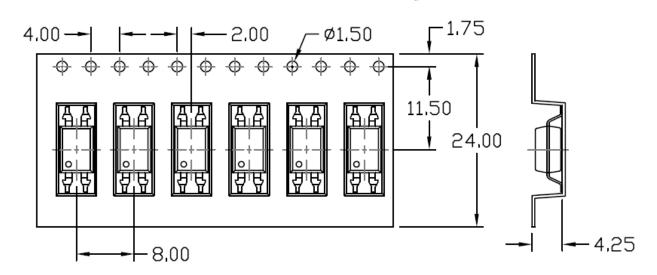




Option S(T2) & SL(T2)

Input Direction




Option SLM(T1)

Input Direction

Option SLM(T2)

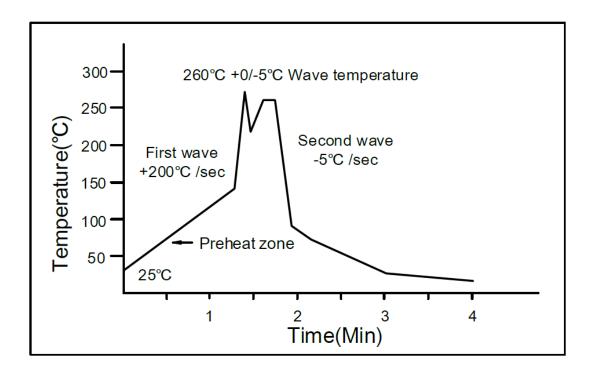
Input Direction

Solderability spec (Follow the JEDEC standard JESD22-B102)

Reflow Soldering: Immersed surface, other than the end of pin as cut-surface, must be covered by solder.

Solder-Bath: More than 95% of the electrode must be covered with solder.

Wave soldering (Follow the JEDEC standard JESD22-A111)


One time soldering is recommended within the condition of temperature.

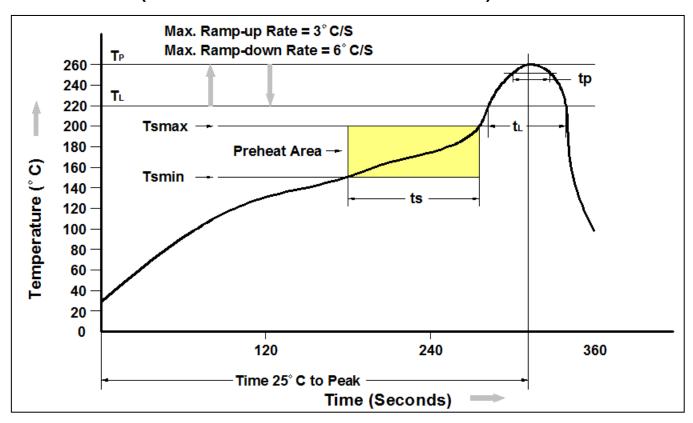
Temperature: 260+0/-5°C.

Time: 10 sec.

Preheat temperature: 25 to 140°C.

Preheat time: 30 to 80 sec.

Iron soldering (Follow the standard MIL-STD 202G, Method 210F)


Allow single lead soldering in every single process.

One time soldering is recommended. Temperature: 350±10°C

Time: 5 sec max.

Reflow Profile (Follow the JEDEC standard J-STD-020)

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t∟ to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max
Time 25°C to Peak Temperature	8 minutes max.

DISCLAIMER

DMC-Isolator® IS A TRADEMARK OF CT MICRO INTERNATIONAL CORPORATION AND/OR ITS SUBSIDIARIES. CT MICRO OWNS THE RIGHTS TO A NUMBER OF PATENTS, TRADEMARKS, COPYRIGHTS AND OTHER INTELLECTUAL PROPERTY.

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.